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The ‘‘coin-tap’’ test has the ability to indicate damage in a structural element due to a
localized change of stiffness or damping. The change in vibration signature may be detected
by ear or more precisely by measurement of the dynamic contact force. A method for
discriminating between measurements made on sound and damaged structures is presented.
An unsupervised neural network algorithm is used for recognizing the differences between
contact force patterns. The method is used for non-destructive inspection of corrosion
damage to steel chequer plate floors in industrial buildings. It is shown that the intelligent
tap test is a useful and practical diagnostic tool for detecting localized damage in structures.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Steel chequer plate is often used in industrial buildings where it provides a convenient
flooring system spanning between I-beams of the main structural steel framework.
At chemical works many such buildings are used for the storage or production of
corrosive chemicals which, in situations of elevated humidity, result in an
aggressive environment. Under these circumstances the gap between the chequer plate
and the beam to which it is fixed may trap moisture leading to the development of
corrosion products, ultimately compromising the strength of the flooring [1]. Visual
inspection is usually difficult due to limited access to the chequer plate from below,
particularly when it requires the removal of ceiling coverings from the lower storey.
Effective inspection often has to be carried out by unbolting and lifting out individual
chequer plates from above. This is a tedious and expensive procedure. There exists a
need to detect corrosion by testing from the upper surface of the chequer plate where
access is easy.

The method proposed for inspection of steel chequer plate floors is a development of the
‘‘coin-tap’’ test of Cawley and Adams [2]. In this method the surface to be tested is tapped
or struck. A damaged surface is usually identified by being less stiff than the sound
material, resulting in a lower frequency note from the impact. Cawley and Adams
measured this quantitatively using a hammer with a force transducer and recorded the
interacting force impulse, which could be subsequently analyzed by examining its
22-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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frequency spectrum. This technique enabled them to distinguish between localized areas of
different stiffness.

In addition, damaged material may possess greater damping, hence attenuating the
vibration. The method has been developed further by applying pattern recognition
techniques to these more complex signals from the impact hammer [3]. In particular,
neural network algorithms have been found to be very effective for detecting the
differences between the signals obtained from sound and damaged structures [4].

2. CHEQUER PLATE FLOORING SYSTEM

The region of flooring tested, shown in Figure 1, was directly above one of a series of
small I-sections that supported the third floor of a packing shed for the production and
storage of ammonium nitrate fertilizer. The region that was chosen for testing is shown in
Figure 2. The flooring comprised 8mm thick chequer plates fixed at regular intervals along
their long edges to the flanges of two small I-sections by five steel bolts with countersunk
heads, as indicated in Figure 2(a). The short edges of the chequer plate were supported by
two larger I-sections that were perpendicular to the small I-sections. Visual inspection of
this beam from the lower floor showed that, at the mid-span region, corrosion products
were packed at its interface with the chequer plate, whereas the regions towards its ends
were relatively free from corrosion. These regions were categorized as ‘‘corroded’’ and
‘‘sound’’ respectively. There were also intermediate regions where the condition was
ambiguous because corrosion products were not clearly visible from the lower floor
although they might have been present. These regions were categorized as ‘‘suspect’’.

3. THE ‘‘COIN-TAP’’ TEST PROCEDURE

The ‘‘coin-tap’’ test is carried out by applying an impact using a hammer with a force
transducer connected to a portable signal processor. Testing of the chequer plate floor is
Figure 1. Section through fertilizer packing shed.
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Figure 2. Detail of chequer plate flooring structural system. (a) Plan of third floor; (b) Section X-X.
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shown in Figure 3. The convenience of the method may be seen clearly. The chequer plate
floor is tested from above and the equipment is light and portable. The standard test
procedure consists of recording both the force–time waveform and the frequency spectrum
averaged over three impacts.

One measurement of the impact force was taken at each of 40 equally spaced positions
along the longer edge of the chequer plate that was supported by the test I-section.
Measurements were taken directly above the flange along the line of the fixing bolts.
Therefore, five of the measurements corresponded to impacts on bolt heads as indicated in
Figure 2(b). A heavy duty hammer fitted with an aluminium tip was used (see Figure 3).
The time histories and frequency spectra were acquired with the spectrum analyzer using a
rectangular window, a bandwidth of 10 kHz and a frequency interval of 6�25Hz. The
sample rate was 25 kHz (40 ms between samples). Each measurement was obtained by
performing a process average on the time histories and frequency spectra acquired from
three impacts at a particular position on the chequer plate. Figure 4 shows the force



Figure 3. Applying the tap test to chequer plate flooring.
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Figure 4. Force waveforms and frequency spectra for impact on chequer plate. (a) Time history of sound
region; (b) Spectrum of sound region; (c) Time history of corroded region; (d) Spectrum of corroded region.
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waveforms for typical impacts over two regions, the first known to be sound and the other
corroded.

Figures 4(a) and 4(c) both show that the presence of corrosion products under the point
of impact has the effect of damping the structural vibrations of the chequer plate. This is
evident because the time history of the sound region exhibits high-frequency ‘‘ringing’’.
Undamped structural vibrations feed back into the hammer’s force transducer. In
contrast, these vibrations are damped out rapidly by the corroded region resulting in a
simple, clean force–time impulse as shown in Figure 4(c). The apparent impulse duration
of the sound region is also greater than for the corroded region because of these
vibrations. This effect is also indicated by comparing the frequency spectra shown in
Figures 4(b) and 4(d). The spectrum of the sound region exhibits peaks corresponding to
modes of vibration at 950 and 1900Hz, whereas the spectrum of the corroded region
shows no such peaks.

In the method of Cawley and Adams [2] two numerical quantities were evaluated from
the frequency spectra. These were then used as discriminators between sound and
damaged regions. The first quantity is the ‘‘cut-off ’’ frequency. This is defined as the
frequency at which the spectral amplitude is 2 dB less than the amplitude at zero
frequency. This frequency is not influenced by variations in hammer velocity during
impact since it depends on stiffness. In the spectra shown, the cut-off frequency of the
sound region is approximately 138Hz, whereas for the corroded region it is approximately
481Hz, as indicated by the broken lines in Figures 4(b) and 4(d). This is due to the relative
increase in structural vibration of the sound region compared with corroded region.

The other quantity used by Cawley and Adams [2] was also derived from the frequency
spectrum as illustrated in Figures 4(b) and 4(d). It is based on the observation that a stiffer
material will display more high-frequency content in the spectrum. The frequency
spectrum was divided into two areas by an arbitrary threshold frequency (nt) close to the
maximum frequency (nmax) at the first minimum amplitude. In the case of the chequer
plate floors, the threshold frequency was 1�2 kHz corresponding to 40% of the maximum
frequency (3 kHz). The discriminator quantity was defined as the ratio of area, Rf ; of the
high-frequency area B to the total area enclosed below the maximum frequency:

Rf ¼ B=ðA þ BÞ: ð1Þ

These areas are shown in Figures 4(b) and 4(d).
The ‘‘cut-off’’ frequency and ratio of areas of frequency spectrum were used together to

discriminate between sound and unsound regions, as shown graphically in Figure 5. It may
be seen that measurements over the sound regions are clustered in the lower left of the plot
whereas those over the corroded regions are clustered in the upper right. Measurements
made over the suspect regions were grouped with those corresponding to corroded regions
in the upper right of the distribution, suggesting that the suspect regions were actually
corroded.

Measurements on the bolts were also grouped with measurements on corroded regions
suggesting that the force waveforms were similar and that the bolts also suppressed
vibrations of the chequer plate. These results confirm that the coin-tap test can
discriminate measurements over corroded regions of the I-section from measurements
over sound regions. It is evident from Figure 4 that the success of the discrimination in this
case is due to the effect that corrosion has on damping of the vibrations under the impact.
The corrosion damps out the higher frequencies resulting in a smooth impact force/time
curve and a flat frequency spectrum. In contrast the sound steelwork transmits high-
frequency vibration or ‘‘ringing’’ back into the force transducer, resulting in a distinctly
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different force/time curve and spectrum. The next section describes a method of pattern
recognition employed to perform this task automatically.

4. NEURAL NETWORK PATTERN RECOGNITION

An important objective of this research was to process the impact data using a pattern
recognition algorithm so that discrimination between sound and unsound structures can
be achieved automatically. It is envisaged that an inspector would ‘‘train’’ the algorithm
by impacting sound structures, so that impacts on structures of unknown condition could
be classified as sound or novel in behaviour.

Computational methods have been applied to the recognition of printed characters and
to differences between graphical displays such as waveforms. The latter application is
relevant to this study. The general procedure is to extract a suitably representative feature
vector from the waveform and present it to an algorithm that will classify it according to
different classes of feature vectors that have previously been presented. The classification
should be on the basis of probability so that exact matches of waveforms are not required,
only the general shape to a defined level of accuracy.

Neural networks have a superficial resemblance to the operation of the human brain,
though in effect they compute the probability of a class of membership for a feature vector
[5]. ‘‘Supervised’’ classification is achieved by assigning each input training vector to a
specified class so that the coefficients in the neural network produce an output
corresponding to the class of the input. A test input vector is then presented to see
what output is produced so that it can be classified accordingly. ‘‘Unsupervised’’ learning
is achieved by establishing the existence of classes amongst a set of input feature vectors on
the basis of probability distributions. The latter method is useful when there is no clear
pre-determined set of classes.
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In this investigation an unsupervised pattern recognition algorithm was used since the
only known pre-determined class would be ‘‘sound’’ condition. The algorithm used was
the probabilistic resource allocating network (PRAN) published by Roberts and
Tarassenko [6]. The operation of the algorithm is illustrated in Figure 6. A feature vector
consisting of the amplitudes of a waveform, denoted by x1; x2; x3; etc., are presented at the
inputs to the network as shown in Figure 6(a). The output unit or kernel, denoted by V1;
consists of a Gaussian probability density function fðxi;mi;FiÞ where xi is a d-
dimensional input training vector, mi is the current location of the kernel in d-dimensional
space, and Fi is its covariance matrix. The Gaussian function fðhÞ is shown in Figure 6(b)
where the vector h is the difference between the feature vector and the vector m,
representing the mean of the kernel. Hence h is given by

h ¼ n �m: ð2Þ

The standard deviation of the kernel is represented by r:
Training is achieved by updating the means mi and covariances Fi at each presentation

of a training vector x: If the response fðxÞ of a new input vector is less than a defined
threshold, then a new kernel is grown denoted by V2 as shown in Figure 6(c). Training
proceeds until no training data meets the growth criterion during presentation of the entire
set of input vectors. Full details of the algorithm are given by Roberts and Tarassenko [6].

There are two empirical quantities that have to be established during the training of a
set of input feature vectors. The first is an adaptation parameter that is chosen from
experience to operate the algorithm efficiently. The second is the growth threshold
mentioned above. This represents a distance from the location of the existing kernel and
depends on the location (mean) and spread (standard deviation) of the kernel. The
threshold distance is best chosen empirically by observing the results after a preliminary
run of the training data. If there are too many output kernels then the threshold can be
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Figure 6. The probabilistic resource allocating network. (a) Initial architecture; (b) The Gaussian Function;
(c) Architecture after growth of one additional unit.
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increased until the training data yields about two or three kernels. The results may be
presented visually by means of a principal component analysis. The principal components
of a vector are those that exhibit the highest variance from one vector to another. The two
highest principal components of the vectors may be plotted on cartesian axes together with
the mean, m; and variance, F; for each kernel. This is illustrated in Figure 7. The two
highest principal components are denoted by x1 and x2: The variances of the four kernels
are shown by error bars that intersect at their means. There is one large kernel with two
lesser kernels and a fourth very small kernel. The three larger kernels may be associated
with sound material, whereas the fourth kernel is somewhat removed from the others and
is sparsely populated, indicating novel behaviour that may be associated with damage.

5. RESULTS AND DISCUSSION

The frequency spectra produced by impacts on the chequer plate flooring were sampled
to form feature vectors that represented the normalized spectrum over a 3 kHz frequency
range (see Figure 8). The feature vectors each had 48 components obtained by sampling at
50Hz intervals between 0 and 250Hz (eight components) and at 68�75Hz intervals
between 250 and 3 kHz (40 components). This distribution was chosen purely for
convenience. The unsupervised probabilistic resource allocating network (PRAN) was
trained by cyclically presenting it with feature vectors obtained from the 40 measurements
at positions along the I-section. A preliminary analysis of the data indicated that the
probability distribution could be represented by two kernels. Therefore, the PRAN was
trained to grow two units by repeatedly training and adjusting the parameters
appropriately.

A principal component analysis, as explained above, was then performed on the feature
vectors. It was found that the first two principal components of the feature vectors were
the 16th and 17th, corresponding to 950 and 1018�75Hz. The locations of the principal
components on the normalized spectra are indicated by the broken lines in Figure 8 and
these show that their magnitudes in the sound region are less than those in the corroded
region. In Figure 9 the measurements on the chequer plate are plotted on orthogonal axes
corresponding to the two principal components. The measurements are indicated by four
symbols, one for each category assigned to the condition of the interface between the
I-section and the chequer plate. Some of the vectors with the same symbol overlap, leading
Figure 7. Principal component visualization after training.
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to an apparent discrepancy in the number of measurements. The kernels are shown by
intersecting error bars, the lengths of which correspond to the standard deviations, while
the points of intersection are the means.
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The measurements over the corroded regions are in a densely populated part of the
figure, whereas measurements over the sound regions are in a sparsely populated area. It
must be remembered that the plot in Figure 9 is a projection of the feature vectors onto a
two-dimensional plane. The PRAN used all 48 components of the feature vectors to
classify. Measurements on the bolts and measurements on suspect regions were clustered
with measurements on corroded regions. This confirms the observation made earlier that
the suspect regions were actually corroded, and that the response of the bolts was similar
to that of the corroded regions because both exhibited damping of the vibrations of the
chequer plate. In practice, the grouping of the bolt data with the corroded region should
not matter since the operator would be aware when bolts are impacted.

These results demonstrate the usefulness of the unsupervised probabilistic resource
allocating network (PRAN) in this application. The condition of the interface between the
chequer plate and the supporting I-section at the exact position of impact is not known
without the tedious task of lifting the chequer plate for examination. However, the
algorithm formed two clearly defined clusters of data from measurements on the chequer
plate corresponding to corroded regions and sound regions. Provided that the network
had already been trained on a chequer plate known to be sound, any subsequent test
would indicate if it were associated with the ‘‘sound’’ cluster or otherwise.

6. SUMMARY AND CONCLUSIONS

The intelligent ‘‘coin-tap’’ test was applied to industrial chequer plate flooring and was
shown to be effective for distinguishing locations of significant corrosion. The corrosion
products between the chequer plate and the supporting I-section were found to damp
structural vibrations of the chequer plate when impacted and therefore the resulting force
waveforms were distinctively different from those obtained by impact over sound regions.

An unsupervised neural network pattern recognition procedure was appropriate for
inspection of chequer plate flooring because only one pre-determined classification was
available for training, namely ‘‘structurally sound’’. During subsequent testing, unsound
regions were then apparent as distinctly separate data clusters and therefore could be
classified as novel.

The equipment required is light and portable and is capable of being developed into a
convenient diagnostic tool for on-site inspection.
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